Heft 4

Der Kraftaufwand

29.10.88

Seite 43 - 51

(43)

eines Systems mit 40 kgr belastet, würde mit einer Geschwindigkeit c fallen, die sich aus der Gleichung 40 = 1.8 · c² bestimmt und gleich 6,3 ist. Hiernach würden also 40 · 6,3 = 252 kgm Arbeit erforderlich sein, während wir nur den vierten Teil dieser Arbeit brauchen.

Durch dieses Resultat gewannen wirdie Überzeugung, daß der durch Stoß erzeugte Luftwiderstand zur Arbeitsverminderung beiträgt und mit großem Vorteil sich aeronautisch verwenden läßt, ebenso wie diese Art Luftwiderstand es ist, welche den fliegenden Tieren das Fliegen auf der Stelle bedeutend erleichtert.

Dieser letztere Versuch war nun aber für uns noch in anderer Beziehung lehrreich. Wir fanden nämlich, daß durch das Flügelaufschlagen

(44)

unser Apparat vorwärts gezogen wurde, was bei den sich schräg nach unten und hinten sich öffnenden Ventilklappen sehr natürlich war. Wir glaubten damals herauszufühlen, daß der Vogel durch Heben der Flügel sich vorwärts treibt und durch Herunterschlagen der Flügel sich hebt, und dieses gab uns dann die Veranlassung,in dem Vorwärtsfliegen überhauptein ferneres wesentliches Moment zur Arbeitsersparung zu vermuten und eine größere Reihe von Versuchen, nach dieser Richtung hin, zu veranstalten.

Bevor auf diese näher eingegangen wird, soll noch einmal der Fall betrachtet werden, wo ein Vogel in windstiller Luft sich an genau derselben Stelle durch Flügelschläge hält. Man bemerkt, daß hierbei der Körper des Vogels eine sehr schräge, nach hinten geneigte Lage einnimmt und, daß die Flügelschläge nicht nach unten und oben, sondern zum Teil nach vorn und hinten erfolgen. An Tauben kann man dieses sehr deutlich beobachten. Der Flügel macht hierbei starke Drehungen, und es scheint für die Gesamthebewirkung der Aufschlag des stark rückwärts gebogenen Flügels mitzuwirken.

Um sich Rechenschaft darüber zu verschaffen, ob durch diese Manipulation auch eine besondere Kraftersparnis herbeigeführt wird, denke man sich diesen Fall im Extrem ausgeführt und den Flügel nur in horizontaler Richtung hin und her bewegt bei abwechselnd schrägen Flügelstellungen (wie Figur). Die Neigung solcher ebenen Flügel sei beispielsweise 45°.

(46)

Die Hebewirkung würde dann beim Hin - und Herschlag gleich groß sein und braucht nur gleich dem Vogelgewicht G zu sein. Wenn die Hebung durch vertikale Flügelschläge erfolgt, bei gleich schnellem Auf - und Niederschlag ist, wie wir gesehen haben der Hebedruck = 2 G erforderlich; die absolute Geschwindigkeit der Flügel sei in diesem Falle mit v bezeichnet, da diese während der halben Zeit nur Kraft verbrauchend wirkt, ist die Arbeit $\frac{2 G \cdot \nu}{2} = G \cdot v$ In dem jetzt betrachteten Falle muß der absolute zum schrägstehenden Flügel normal gerichtete Luftwiderstand = $\frac{\nu}{2} \cdot G$ sein, während sowohl die Hebewirkung als auch die treibende Kraft = G ist (Fig) .

Zur Hervorrufung des Luftwiderstandes 12 G braucht die schräge Fläche auch die horizontale Geschwindigkeit v, denn wenn diese Geschwindigkeit senkrecht zur Fläche den Druck 2 G gibt, so gibt sie unter 45° geneigt ..in 45°x2 G = 12 G . Da die Treibekraft G jetzt immerwährend mit der Geschwindigkeit v wirkt, wird auch jetzt die Arbeitsleistung Gv.

Läßt sich auf diese Weise nur ausrechnen, daß bei dieser Bewegungsart weder mehr noch weniger Arbeit erforderlich ist, so leuchtet doch bei dieser Flügelbewegung noch ein andrer Vorteil ein.

Während die Luft sonst durch Flügelschläge im wesentlichen nach einer Richtung und zwar nach unten getrieben wurde, wird sie jetzt hin - und hergeschlagen und wirkte

(48)

nicht bloß Geschwindigkeit vermindernd durch ihre anfängliche Massenträgheit, sondern die ihr erteilte lebendige Kraft muß durch den Rückschlag erst aufgezehrt werden. Bei den hin -und hergeschlagenen Flügeln macht sich also jeder Schlag einen Teil der beim vorhergehenden Schlag aufgewendeten Arbeit wieder nutzbar und hieraus muß in der Tat eine Verminderung des Arbeitskonsums liegen, indem die erforderliche absolute Geschwindigkeit kleiner als v ist.

Der Vogelflügel ist nun durch seine einseitig hohle Fläche nicht geeignet, die zuletzt besprochene Bewegung in ihrer äußersten Form auszuführen, sondern nähert er sich nur in gewissem Grade dieser Bewegungsform, genießt daher also auch nur teilweise ihre Vorteile.

Wir kennen aber ein tierisches Organ, was sehr annähernd die symmetrische hin - und hergehende Bewegung mit schräger Druckfläche macht; es ist dies der Fischschwanz; denn die für die Luft hergeleiteten dynamischen Wirkungen finden in ähnlicher Weise im Wasser statt.

Die zuletzt betrachtete Bewegungsform von Flügeln beansprucht auch noch ein ferneres Interesse. Sie ist nämlich dasselbe für die Schraubenflügelbewegung, was die normal zum Flügel ausgeführte Schlagbewegung für die Fallschirmbewegung ist und zwar ein Faktor zur bedeutenden Kraftersparnis.

(50)

Fassen wir das Ergebnis der vorstehenden Betrachtungen und Versuche zusammen, so kommen wir auf folgende Schlüsse:

1. Der Arbeitsaufwand der Vögel beim Fliegen ohne wesentliche Vorwärtsbewegung, welcher sich nach der Beobachtung der Flügelbewegungen ergibt, ist ca(?) 4 mal kleiner, als sich derselbe nach den gewöhnlichen Luftwiderstandsformeln berechnet.

- 2. Ein ähnliches Resultat gibt auch ein künstlicher, nach Art der Vogelflügel gebauter und bewegter Flugapparat.
- 3. Diese Arbeitsersparnis kann nur auf dem durch kurze Flügelschläge erzeugten Luftwiderstand basieren, der schon bei geringeren Geschwindigkeiten die erforderliche Größe erlangt.
- 4. Der geringste Arbeitsaufwand wird erhalten, wenn die Flügel um weniges schneller gehoben als gesenkt werden.

- 5. Ein in horizontaler Richtung hin und hergeschlagener, entsprechend schräg gestellter Flügel, oder ein hin und herschlagender Schraubenflügel mit wechselnder Flügelstellung, gewährt den günstigsten Fall eines nur zum Heben verwendeten Luftpropellers.
- 6. Die physische Kraft des Menschen ist nicht ausreichend, um ein Fliegen auf der Stelle mit einem Flugapparat auszuführen, und wäre hinzu eine motorische Kraft von mehr wie $1\mathcal{P}$ erforderlich.
- 7. Die Flugmethode der fliegenden Tiere besitzt darin einen großen Vorteil, daß dieselbe auf oszillatorischen Flügelbewegungen basiert und jeder Flügelschlag von neuem die Massenträgheit der Luft ausnutzt.